Lattices of Minimum Covolume Are Non-uniform
نویسنده
چکیده
In this article, we prove that a lattice of minimum covolume in a simple Lie group over a positive characteristic local field is non-uniform if the Weil’s conjecture on Tamagawa numbers [Wei61] holds. This, in part, answers Lubotzky’s conjecture [Lub91]
منابع مشابه
Lattices of minimum covolume in Chevalley groups over local fields of positive characteristic
In this article, we show that if G is a simply connected Chevalley group of either classical type of rank bigger than 1 or type E6, and q > 9 is a power of a prime number p > 5, then G = G(Fq((t))), up to an automorphism, has a unique lattice of minimum covolume, which is G(Fq[t]). 1
متن کاملCovolumes of Uniform Lattices Acting on Polygonal Complexes
Let X be a polygonal complex with finitely many isometry classes of links. We establish a restriction on the covolumes of uniform lattices acting on X. When all links of X are isometric, and are either a complete bipartite graph or the building for a Chevalley group of rank 2 over a field of prime order, we obtain further restrictions on covolumes. Some of these restrictions are sharp: in [Th] ...
متن کاملCovolumes of nonuniform lattices in PU(n, 1)
This paper studies the covolumes of nonuniform arithmetic lattices in PU(n, 1). We determine the smallest covolume nonuniform arithmetic lattices for each n, the number of minimal covolume lattices for each n, and study the growth of the minimal covolume as n varies. In particular, there is a unique lattice (up to isomorphism) in PU(9, 1) of smallest Euler–Poincaré characteristic amongst all no...
متن کاملOn Minimal Covolume Hyperbolic Lattices
We study lattices with a non-compact fundamental domain of small volume in hyperbolic space Hn. First, we identify the arithmetic lattices in Isom+Hn of minimal covolume for even n up to 18. Then, we discuss the related problem in higher odd dimensions and provide solutions for n = 11 and n = 13 in terms of the rotation subgroup of certain Coxeter pyramid groups found by Tumarkin. The results d...
متن کاملCocompact Lattices of Minimal Covolume in Rank 2 Kac–moody Groups, Part Ii
Let G be a topological Kac–Moody group of rank 2 with symmetric Cartan matrix, defined over a finite field Fq . An example is G = SL(2,Fq((t−1))). We determine a positive lower bound on the covolumes of cocompact lattices in G, and construct a cocompact lattice Γ0 < G which realises this minimum. This completes the work begun in Part I, which considered the cases when G admits an edge-transitiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011